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The widespread availability of genetic testing for those with neurodevelop-

mental disorders has highlighted the importance of many genes necessary

for the proper development and function of the nervous system. One gene

found to be genetically altered in the X-linked intellectual disability disor-

der Claes-Jensen syndrome is KDM5C, which encodes a histone demethy-

lase that regulates transcription by altering chromatin. While the genetic

link between KDM5C and cognitive (dys)function is clear, how KDM5C

functions to control transcriptional programs within neurons to impact

their growth and activity remains the subject of ongoing research. Here, we

review our current knowledge of Claes-Jensen syndrome and discuss

important new data using model organisms that have revealed the impor-

tance of KDM5C in regulating aspects of neuronal development and func-

tion. Continued research into the molecular and cellular activities regulated

by KDM5C is expected to provide critical etiological insights into Claes-

Jensen syndrome and highlight potential targets for developing therapies to

improve the quality of life of those affected.

Genetic variants in theKDM5C gene lead
to the intellectual disability disorder
Claes-Jensen syndrome

Neurodevelopmental disorders (NDDs) are a group of

related conditions that alter the functioning of the ner-

vous system of affected individuals and include intel-

lectual disability (ID), autism spectrum disorders

(ASD), communication disorders, and developmental

delay (DD). Environmental factors such as maternal

stress during pregnancy or preterm birth can increase

the risk of NDDs [1–3]. In addition, many genetic

variants have been etiologically linked to NDDs using

genome-wide approaches such as comparative genomic

hybridization and whole-exome sequencing [4]. These

NDD-associated changes to DNA can range from

Abbreviations

ARID, A/T-rich interaction domain; ASD, autism spectrum disorder; CJ-XLID, Claes-Jensen X-linked intellectual disability; DD, developmental

delay; DSM, diagnostic and statistical manual of mental disorders; H3K4me3, histone H3 trimethylated at lysine residue at amino acid

position 4; ID, intellectual disability; IQ, intelligence quotient; JmjC, jumonji C-terminal domain; JmjN, jumonji N-terminal domain; KDM5,

lysine demethylase 5; KDM5C-RD, KDM5C-related disorder; KMT2A, lysine methyltransferase 2A; KO, knock out; MRI, magnetic resonance

imaging; MRXSCJ, mental retardation, X-linked, syndromic, Claes-Jensen type; NDD, neurodevelopmental disorder; NMJ, neuromuscular

junction; OMIM, online Mendelian inheritance in man.

1The FEBS Journal (2021) ª 2021 Federation of European Biochemical Societies

https://orcid.org/0000-0001-5922-7291
https://orcid.org/0000-0001-5922-7291
https://orcid.org/0000-0001-5922-7291
https://orcid.org/0000-0002-5826-7547
https://orcid.org/0000-0002-5826-7547
https://orcid.org/0000-0002-5826-7547
mailto:
http://crossmark.crossref.org/dialog/?doi=10.1111%2Ffebs.16204&domain=pdf&date_stamp=2021-09-29


single base pair changes to large deletions and can

either display a familial inheritance profile or occur

de novo in affected individuals. While genes with roles

in a range of cellular processes have been associated

with NDDs, many variants affect transcriptional regu-

lators, clearly demonstrating the importance of regu-

lated gene expression to the proper development and

functioning of the brain [5,6]. This review focuses on

one transcriptional regulator, KDM5C, which is found

to be genetically altered in individuals with the NDD

intellectual disability, X-linked, syndromic, Claes-

Jensen type (OMIM#300534) (Fig. 1A; Table 1). We

will refer to this disorder as Claes-Jensen syndrome,

although it should be noted that it has also been

referred to as CJ-XLID, MRXSCJ, and KDM5C-RD

[7–10].
KDM5C is one of four paralogous genes, KDM5A-

D, that encode structurally similar proteins that func-

tion to regulate transcription (Fig. 1B). KDM5 genes

are expressed in a broad range of tissues, although it

is notable that KDM5C is expressed at high levels

within the brain, consistent with it playing a critical

role in cognitive function [11]. The most characterized

means by which KDM5C regulates gene expression is

via its enzymatic demethylase activity. This function is

mediated through its Jumonji N (JmjN) and Jumonji

C (JmjC) domains, which enzymatically removes, di-

and trimethyl marks from lysine 4 of histone H3

(H3K4me2/3) (Fig. 1) [12–15]. The target of KDM5C

protein demethylation, H3K4me2/3, is found primarily

surrounding promoter regions of genes and correlates

with transcriptional activation [16]. Consistent with its

ability to regulate the activity of promoters, KDM5C

binds to these regulatory elements to alter transcrip-

tion [7,8,17,18].

Clinically, males with pathogenic genetic variants in

KDM5C are almost universally diagnosed with ID

(Table 1). According to the most recent DSM-5

release, a diagnosis of ID is defined by an intelligence

quotient (IQ) of less than 70 along with deficits in two

or more adaptive behaviors that significantly affect

daily functioning by the age of 18 [19]. Adaptive

behaviors include conceptual skills related to language

and problem solving, in addition to social proficiencies

in interpersonal communication, social judgment, and

empathy [19–21]. Also considered in a diagnosis of ID

is the ability of affected individuals to independently

carry out tasks required for self-care, to maintain

employment, and be fiscally responsible. The degree of

ID observed in males with Claes-Jensen syndrome

A

B

Fig. 1. The KDM5C gene that is genetically altered in individuals with Claes-Jensen syndrome encodes a conserved protein. (A) Genetic

variants observed in individuals with Claes-Jensen syndrome. Types of genetic change are indicated by colored circles, with missense in

black, frameshift in green, splice site in yellow, and nonsense variants in gray. Details of each variant can be found in Table 1. (B)

Phylogenetic relationship between the four paralogous KDM5 family proteins in humans and the single orthologs in flies and worms.

Domains are shown by colored boxes. Animal images generated using Biorender.com.
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varies from mild to severe, with children often also dis-

playing and an increased incidence of epilepsy, aggres-

sion, and motor delays. Individuals may also present

with physical characteristics such as short stature and

craniofacial features [22–25]. Typically, those with mild

ID have an IQ of 50–70 and have difficulty with speech,

reading and writing, straightforward arithmetic, and/or

adapting to societal norms. Those with moderate and

severe ID have IQs of 35–50 and 20–40, respectively, and
show greater deficits to adaptive behaviors. They may

additionally require daily assistance with tasks involving

self-care and social interaction.

Unlike males hemizygous for pathogenic KDM5C

variants, the clinical presentation of heterozygous

females varies widely and is only now beginning to be

characterized in detail. While up to 50% of females

have no overt deficits, others show intellectual disabil-

ity, developmental delay, learning and speech difficul-

ties, hormonal imbalance, and anxiety [9,23,26–29].
The basis for the incomplete penetrance of symptoms

Table 1. KDM5C variants observed in individuals with Claes-Jensen syndrome. Type of variants and corresponding change to the encoded

protein observed in males and/or females with Claes-Jensen syndrome. For missense variants, predicted domain(s) affected by the change

in amino acid are indicated. Effects to in vitro demethylase activity are also indicated, if applicable. The "–" symbol indicates unknown or not

determined.

Missense variants NDD KDM5C domain Enzymatic activity Frameshift variants NDD

M1T [28] ID - - A50Rfs*23 [26] ID

W52C [26] ID JmjN - R68fs*7 [10] ID

A77T [22] ID ARID - G170Efs*64 [88] ID/DD

Y85F [89] ID/DD ARID - L197fs*23 [26] ID/DD

D87G [26,90] (2 families) ID ARID No defect [91] R211fs*23 [88] ID/DD

Y164N [92] ID ARID - R211fs*22 [88] ID/DD

A388P [10] ID PHD/JmjC Reduced [14] L257Afs*4 [93] ID

D402Y [10] ID PHD/JmjC Reduced [91,94] T270fs*2 [95] ID

S451R [96] ID PHD/JmjC - W534Gfs*15 [92] ID

P480L [97] ID PHD/JmjC Reduced [94] A683fs*81 [25] ID

Y503C [89] ID/DD JmjC - R795fs*5 [26] ID

V504 M [22] ID JmjC - E810Cfs*5 [98] NDD

S522F [23] ID JmjC - V1075fs*2 [94] ID

K532N [99] ID JmjC - K1087fs*43 [24] ID

P554T [24] ID JmjC Reduced [24] A1292Qfs*7 [27] ID

R599C [26,89] ID/DD JmjC - L1336Pfs*11 [100] ID

E613K [26] ID JmjC - R1481Gfs*9 [22] ID

W622C [26] ID JmjC - Nonsense variants NDD

C640Y [101] ID JmjC - Q237* [102] ID

F642L [90] ID JmjC/C5HC2 Reduced [14] R322* [90] ID

E698K [10] ID C5HC2 - E424* [103] ID

T713M [104] ID C5HC2 - E433* [105] ID

A718P [105] ID C5HC2 - E467* [89] ID/DD

L731F [10,106] ID C5HC2 Reduced [14] R694* [10] ID

R750W [90] ID C5HC2 - C724* [36] ID

Y751C [90] ID C5HC2 Reduced [14] R828* [107] ID

R766W [108] ID/ASD C5HC2/PLU-1 - Q970* [92] ID

E1024D [109] ID PLU-1 - C1095* [90] ID

R1115H [35] ID/ASD - No defect [35] W1288* [10] ID

A1277T [89] ID/DD - - E1299* [110] ID

D1300V [80,111] ASD - - E1468* [99] ID

Splice site variants NDD

c.160G > T [112] ID

c.1243-2A > G [26] ID

c.658-1G > T [113] ID/DD

c.1583 + 5G > A [22] ID

c.2243 + 2T > C [92] ID

c.2622 + 2dupT [26] ID
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is not clear, though for other genetic causes of X-

linked cognitive disorders such as Fragile X syndrome,

skewing of X-chromosome inactivation can impact the

severity of symptoms in females [30,31]. Despite ini-

tially being thought to escape X-inactivation [32], the

extent to which KDM5C is expressed from the inactive

X-chromosome appears to vary widely [33,34]. It is

therefore likely that variability in KDM5C inactivation

contributes to disease severity in females with Claes-

Jensen syndrome [26,28,35].

Pathogenic KDM5C variants alter
neuronal structure and function

Very little published literature exists detailing the

anatomical and functional changes to the brain that

occur in those with Claes-Jensen syndrome. A subset of

individuals has been documented to have microcephaly,

and, in one case, an MRI revealed a disproportionately

small cerebellum [27,36]; however, overall changes in

brain size and structure do not appear to be common fea-

tures of this disorder. To better understand the links

between KDM5C function and brain development, sev-

eral powerful genetic model systems have been employed.

These include the mouse Mus musculus, the vinegar fly

Drosophila melanogaster, and the nematode worm

Caenorhabditis elegans. Studies using these animal mod-

els suggest that KDM5C plays vital roles in several differ-

ent aspects of neuronal development and function, all of

which could contribute to the clinical manifestations seen

in those with Claes-Jensen syndrome.

The first in vivo model developed to study the molecu-

lar and cellular mechanisms underlying Claes-Jensen

syndrome utilized mice. Like humans, mice encode four

paralogous Kdm5 genes and genetic knockout of the X-

linked Kdm5c (Kdm5cKO) results in features that resem-

ble those observed in patients. For example, hemizygous

male Kdm5cKO mice are smaller than their wild-type lit-

termates and show deficits in learning and memory and

motor control while displaying increased aggression and

seizure susceptibility [7,8]. Heterozygous female

Kdm5cKO mice have milder phenotypes than hemizygous

males, being only slightly smaller than expected and

exhibiting mild learning deficits [8]. While the brains

from Kdm5cKO adult mice did not show any overall

cytoarchitectural defects, cellular studies revealed that

pyramidal neurons from the basolateral amygdala and

the ventral hippocampus showed dendritic spine defects

[7,18]. Dendritic spines receive synaptic signals from the

axons of adjacent neurons and can change based on

synaptic strength [37]. Notably, individuals with a range

of different NDDs have been shown to have alterations

in dendritic spine number and morphology [38–40].
Whether the changes to dendritic structure seen in

Kdm5c knockout mice are the result of altered synaptic

transmission or whether such morphological defects

occur in other neuronal subtypes remains important and

open questions.

The subject of whether KDM5C regulates gene

expression programs necessary for synaptic activity has

been investigated using another animal model, Droso-

phila. In contrast to mice and humans, Drosophila has a

smaller genome that encodes a single KDM5 protein-

containing conserved domains from all four mam-

malian paralogs (Fig. 1). Because ˜70% of human

disease-causing genes are conserved in Drosophila, it is

widely used to provide fundamental insights into many

disorders, including NDDs [41–43]. Drosophila has

recently been developed as a model for Claes-Jensen

syndrome, with KDM5 being shown to be necessary

for associative learning and memory in adult flies

[44,45]. The Drosophila larval neuromuscular junction

(NMJ) is a glutamatergic synapse that is functionally

similar to an excitatory synaptic connection in the

human brain [46]. Analyses of genetic null animals have

shown that KDM5 is essential in motor neurons to reg-

ulate the size and number of synaptic boutons at the

NMJ, as well as for proper synaptic transmission [44].

Because altered glutamatergic signaling has been impli-

cated in a range of NDDs [5,47], KDM5C-mediated

regulation of synaptic signaling could contribute to the

cognitive changes seen in Claes-Jensen syndrome.

Studies from Drosophila and C. elegans suggest that

KDM5C is also likely to alter neuronal connectivity

through its regulation of axonal growth and guidance.

Whereas the Drosophila larval NMJ is an excellent sys-

tem to examine synaptic morphology and function, the

mushroom body, a key learning and memory structure

within the adult brain, is a well-established model for

studying axonal growth and guidance [46]. Animals

lacking the kdm5 gene show significant structural defects

that are caused by failure of the neurons that comprise

the mushroom body (Kenyon cells) to properly project

their axons [48]. A similar phenotype has been described

in worms with mutations in the single kdm5 gene (rbr-

2), where the axons of inter- and motoneurons show

altered trajectory [49]. The repertoire of neurons affected

by these growth and guidance defects in the fly and

worm systems remains to be determined, as does the

extent to which KDM5C regulates this process within

mammalian brains. Combined, these data do provide

compelling evidence that KDM5C controls more than

one aspect of neuronal development across multiple cell

types and developmental stages (Fig. 2).
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KDM5C variants alter transcriptional
programs in neurons

Because KDM5 family proteins regulate gene expres-

sion, changes to critical transcriptional programs are

likely to lie at the heart of the clinical features seen in

individuals with Claes-Jensen syndrome. Across spe-

cies, KDM5 family proteins act primarily as modula-

tors of gene expression, with their loss leading to

modest (mostly < 2-fold) changes to the expression of

downstream target genes [17,44,45,48–56]. This obser-

vation suggests that the phenotypes caused by alleles

of KDM5C are due to the combined impact of many,

relatively small, changes to gene expression. Patho-

genic variants in KDM5C are thus likely to contribute

to the neurodevelopmental features seen in Claes-

Jensen syndrome by affecting multiple key transcrip-

tional programs. This can make it challenging to

define the in vivo transcriptional targets of KDM5C,

particularly when comparing human samples that can

be genetically heterogeneous. This challenge is high-

lighted by a study that used cells from patients with

Claes-Jensen syndrome [11]. Because the human brain

is not amenable to direct assays to define KDM5C

functions, transformed lymphoblastoid cells from

patients hemizygous for KDM5C alleles were used for

genome-wide and targeted transcriptional analyses.

While this led to the identification of a handful of

genes that were dysregulated across all patient-derived

cell lines, it did not lead to testable models of how

variants in KDM5C could affect cognition and behav-

ior. Although easy to access and culture, the use of

lymphoid cells may complicate the interpretation of

these data, since they may only partially recapitulate

all the gene regulatory activities of KDM5C in the

brain. In addition, differences in genetic background

between individuals with Claes-Jensen syndrome and

controls could make it difficult to detect small changes

in gene expression. It is also notable that many key

transcriptional changes are likely to occur during

development, and thus may be missed by studies using

mature cell types collected from patients.

Model organisms provide genetically controlled

systems that are amenable to studies aimed at

Fig. 2. Neuronal functions of KDM5C that could contribute to Claes-Jensen syndrome. KDM5C is a transcriptional regulator required for

several distinct aspects of neuronal development and function based on studies in animal models (mice, flies, and worms). See text for

details. Model created using Biorender.com.
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understanding how KDM5C regulates gene expression

in neuronal cell types. Indeed, transcriptomic analyses

from mice and flies have revealed interesting insights

into possible mechanisms contributing to Claes-Jensen

syndrome. In-keeping with the range of neuronal func-

tions found to be phenotypically altered by loss of

Kdm5c in mice or its orthologs in Drosophila and

C. elegans, KDM5C can regulate different distinct

transcriptional programs. In some contexts, the gene

expression changes seen upon loss of KDM5C appear

to fit expectations based on the observed nervous sys-

tem deficits. For example, consistent with its role in

synaptic structure and function in mice and flies,

KDM5C regulates the expression of genes involved in

synaptic plasticity and neurotransmitter release

[7,44,57]. Similarly, known regulators of axonal

growth, such as the actin cytoskeleton binding protein

Wasp-1 and the transcriptional regulator Prospero,

have been found to be key mediators of the neuronal

guidance defects observed in worms and flies [48,49].

Other changes to gene expression programs regu-

lated by KDM5C have been more surprising. For

example, gene expression changes in the hippocampus

of Kdm5cKO mice revealed the derepression of a signifi-

cant number of genes whose expression is normally

limited to the germline [8]. This gene expression signa-

ture has the potential to be significant for the neu-

ropathology of Claes-Jensen syndrome, as germline-

enriched genes are found to be derepressed in mouse

models of other NDDs such as Kleefstra syndrome

and Rett syndrome [58–60]. An additional cellular pro-

cess that was uncovered through analyses of a Droso-

phila strain harboring a patient-associated variant in

the fly ortholog of KDM5C was the regulation of ribo-

somal protein genes [55]. Proper control of translation

is critical to neuronal function, with deficits in this

process being observed in individuals with other inher-

ited forms of cognitive impairment, including Fragile

X syndrome, ASD, and Alzheimer’s disease [61–70].
This suggests that altered translation may be a com-

mon pathogenic mechanism of a subset of cognitive

disorders that includes Claes-Jensen syndrome. Consis-

tent with the possibility that the regulation of transla-

tion may be conserved in vertebrate animals, ChIP

data from cultured embryonic mouse cortical neurons

show that KDM5C binds to the promoter region of

most ribosomal protein genes [7]. Both the inappropri-

ate expression of germline genes and altered expression

of ribosomal protein genes have the potential to inter-

fere with neuronal structure and function, thereby con-

tributing to the cognitive changes seen in those with

Claes-Jensen syndrome.

Leveraging model organisms to
uncover disrupted KDM5C regulatory
mechanisms in Claes-Jensen
syndrome

It is generally assumed that the histone demethylase

activity of KDM5C is the primary means by which it

regulates gene expression and that loss of this activity

leads to cognitive impairment. This hypothesis is

appealing since it points toward a potential means for

targeted therapies for individuals with Claes-Jensen

syndrome. The most compelling data in support of this

model come from a study showing that the learning

and memory phenotypes of hemizygous Kdm5cKO mice

are attenuated by genetically reducing the levels of one

of the enzymes that deposits the H3K4me3 mark,

KMT2A [18]. Corroborating evidence comes from

studies using a Drosophila model of Claes-Jensen syn-

drome. Analyses of a fly strain specifically lacking

KDM5 histone demethylase activity have revealed that

this enzymatic function is essential both for proper

synaptic function at the larval NMJ and for learning

and memory in adults [44,45,55]. Similarly, the axonal

guidance defects observed in C. elegans are caused by

the loss of the catalytic activity of KDM5 [49]. Impor-

tantly, these data are consistent with the general obser-

vation that tight regulation of H3K4me3 levels

appears to be critical in the brain, as mutations in

other regulators of this chromatin mark are also

observed in individuals with NDDs [71].

There is, however, accumulating evidence that

KDM5C may affect transcriptional programs critical

for normal neuronal development and function via

nonenzymatic means. While some missense mutations

in human KDM5C attenuate its in vitro enzymatic

activity to some extent, this is not universally true, as

two patient-associated mutations do not result in

reduced demethylase function (Table 1) [14,15,35].

Interestingly, the missense variants that do not affect

KDM5C’s in vitro demethylase activity occur in two

different regions of the protein. The D87G variant is

at the N-terminal extreme of the A/T-rich interaction

domain (ARID) that can bind both A/T- and C/G-

rich DNA sequences in vitro [72,73]. While this change

could alter the ability of KDM5C to be recruited to

some target genes, structural modeling studies suggest

that this variant is unlikely to affect ARID-mediated

DNA binding [74]. Instead, this change could affect

protein–protein interactions necessary for KDM5C to

regulate the expression of its target genes. The other

variant, R1115H, occurs in a region of unknown func-

tion toward the C terminus of KDM5C. Like D87G,
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this change could alter critical protein–protein interac-

tions. Additional evidence supporting nonenzymatic

roles comes from Drosophila, where the regulation of

axonal growth and guidance by KDM5 in Kenyon

cells occurs independently of its demethylase activity

[48]. Precisely how KDM5 family proteins regulate

neuronal gene expression via nonenzymatic mecha-

nisms is still not clear. However, the involvement of

additional mechanisms of gene regulation by KDM5C

in neuronal lineages is unsurprising given the multido-

main nature of this family of proteins (Fig. 1). Indeed,

there is now considerable evidence that all KDM5

family proteins can regulate gene expression by multi-

ple mechanisms, such as by interacting with lysine

deacetylases and chromatin remodelers [49,75,76].

These data highlight the complex nature of KDM5-

regulated gene expression and suggest that there may

be more than one way that mutations in KDM5 fam-

ily genes can lead to cognitive phenotypes.

Conclusions and perspectives

Since the first molecular identification of KDM5C vari-

ants in patients with ID in 2005 [10], many additional

pathogenic alleles have been identified in individuals

with NDDs. More recently, it has also become clear

that a more general feature of KDM5 paralogs may

be to regulate critical neuronal functions. Most nota-

bly, variants in KDM5B have recently been observed

in individuals with NDDs and can result in clinical

features that overlap with, but are not identical to,

those observed in individuals with Claes-Jensen syn-

drome [5,77–81]. Despite the clear link between

KDM5 proteins and cognition, we still have much to

learn about how these proteins function molecularly to

orchestrate gene expression programs that are needed

for brain development. For example, we still lack a

basic understanding of how KDM5 proteins are

recruited to their target promoters, in addition to

which proteins they interact with that facilitate their

transcriptional regulatory functions. It is also possible

that KDM5C acts through nontranscriptional means

to affect neuronal development and function. Key to

these fundamental discoveries will be the use of animal

model systems. In addition, there is a great deal of

excitement about the development of organoid models

generated from human induced pluripotent stem cells.

Cerebral organoids recapitulate some of the structural

and molecular aspects of brain development and are

increasingly used to understand the basis of NDDs

[82–87]. Analyses of organoids are therefore expected

to complement studies in model organisms to provide

a more complete understanding of the effects of

specific patient alleles on neuronal development and

function. This fundamental knowledge will, in turn,

lead to the development of targeted therapies to help

individuals with Claes-Jensen syndrome.
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