

KDM5C is an X-linked gene that is mutated in patients with intellectual disability

Mild to severe intellectual disability, autism, short stature, seizures, hyperreflexia, increased aggression

KDM5C regulates gene expression – which is important for everything

In our cells, DNA occurs in the context of chromatin

Gene regulation is important and must occur in the context of chromatin

Chromatin affects gene regulation

What do we know about how KDM5C functions?

The link between KDM5C mutations and neuronal function remains largely unknown

Which target genes are affected?

Do all mutations affect the same pathways?

What is the role of demethylase activity?

Which cell types are affected and what happens to them?

Understanding and (ultimately) treating patients with KDM5C mutations is going take a team effort

- Difficult to examine neuronal cells in a physiological (normal) setting
- Genetic background of patients very diverse making it difficult to determine which
 - Ethical considerations makes testing potential treatments initially difficult

Understanding and (ultimately) treating patients with KDM5C mutations is going take a team effort

Why did we choose flies?

Drosophila have been used for 100 years to unlock secrets of human physiology and biology

75% of genes associated with human disorders have an equivalent gene in flies

Despite *Drosophila* not being the same size as a human, nor looking much like one, gene function is highly conserved

Drosophila have an unparalleled genetic toolkit

• Loss of KDM5

- 10 strains with point mutations found in patients with intellectual disability
 - A strain specifically lacking demethylase activity (not a patient mutation)

The power of combining multiple approaches

- Do mutations affect a core set of target genes? What are they?
 - What are the neuronal defects?
 - What is the contribution of KDM5's demethylase activity?

The mushroom body is critical for learning and memory in flies

Adult mushroom body neurons

A tale of demethylase-dependent and independent KDM5 functions

Some alleles simply abolish demethylase activity

Adult mushroom body neurons

Transcriptome analyses (examine the expression level of every gene in the genome)

KDM5 is required for the transcription of ribosomal protein genes

Local translation in neuronal compartments is important for function

- Mutations in the mTOR pathway are found in ID patients.
- Mutations in the fragile X gene Fmr1 affect translation.
- Alzheimer's Disease patient brains show decreased translation.

The demethylase activity of KDM5 is required for learning and memory

Learning and memory test

The pathways that mediate short- and long-term memory are evolutionarily conserved

The *kdm5c^{A388P}* mutation does not affect neuronal structure

Adult mushroom body neurons

Hayden Hatch

Other kdm5c alleles affect neuroanatomy

- This slide contained unpublished data that is unable to be made public at this point.

Mushroom body defects are observed in other Drosophila models of intellectual disability

Kelly et al., 2016

The pathways dysregulated by these mutations are conserved across species

KDM5 functions in neuronal development and function

Understanding the basic biology of KDM5 is the first step to developing treatments for patients.

